Bureau de Normalisation des Liants Hydrauliques

7, place de la Défense - 92974 Paris-la-Défense Cedex - Tél.: +33 (0)1 55 23 01 42 - Fax: +33 (0)1 49 67 10 46 <u>E-mail : a.bonnet@atilh.fr</u>

Certificate of Analysis

SRM cement SN201

Portland-Composite Cement SLAG (CEM III/A 42,5 N)

Distributed by:

SNL (Société Nouvelle Du Littoral)

Siège social et usine : Zone Artisanale – BP 9 F-11370 LEUCATE Tél. (33) 68 40 14 05 – Fax (33) 68 40 92 72 - http://www.standard-sand.fr

I – Participation and execution of tests

Each year the European council "Association Technique de l'Industrie des Liants Hydrauliques" (ATILH) organises an round robin test campaign involving in particular the participation of the cement production industry laboratories, the cement end-user laboratories and Research and Inspection Centers within the construction materials sector. This participation is compulsory for laboratories accredited by COFRAC for cement testing. The tests are carried out in accordance with standardised methods where latter exist, otherwise according to everyday traditional methods.

II – Statistical analysis of the results

Outliers are eliminated via the STUDENT's test with a confidence level of 98 %. A reiteration is set at this threshold in order to keep only those values which are related to the "Normal or Gaussian" distribution, the latter being entirely defined by 2 parameters: mean and standard deviation. The coefficient of variation symbolised by "V" is the ratio between the standard deviation " σ " and the mean value \overline{X} .

III – Specific surface and particle size analysis

For the calibration of the Blaine permeability apparatus, follow the requirements of the EN 196-6 standard, paying particular attention to the temperature corrections, if any. To determine the volume of the compacted layer, it is not essential to use the Reference Material (but ensure that a sufficient quantity is taken so that the mass of the mercury does not modify the compaction of the powder layer). Reference Material should be used systematically:

- a) after 1000 tests;
- b) when using another type of manometric liquid, another type of filter paper, a new manometer tube or a new perforated disc;
- c) If discrepancies are systematic with the secondary reference cement.

Table 1

	Mean value	Dispersion characteristics Reproducibility	
	\overline{X}	σ	V (%)
Particle density (g/cm³) with picnometer method	3,03	0,02	0,67
Blaine Specific Area (cm ² /g) with EN 196-6	4231	57	2,32

Table 2

III - Chemical composition

X-1	ray fluorescence	spectrometry, fused bea	d (ISO 29581-2)
Elements	Mean \overline{X} (%)	Standard deviation $\sigma(\%)$ reproducibility	Coefficient of variation V (%)
Perte au feu 1	1.8	0.04	-
SiO ₂	25.63	0,30	1,62
Al_2O_3	6.81	0.18	1,41
Fe ₂ O ₃	3.08	0,05	1,65
CaO	54.48	0.23	0.76
MgO	3.35	0,09	2,25
$SO3^3$	3.16	0,3	3,45
Perte au feu 2	2.35	0.15	-
Na_2O^1	0.33	0,13	15,02
K_2O^1	0,73	0,06	3,24
TiO ₂	0,41	0,01	3,02
P_2O_5	0,29*	0.01	

¹ perte au feu brute ² perte au feu corrigé des sulures

IV – Sample conditioning

The sample of this reference material is packaged in 5*5 g bottle, sealed with a secure screw cap. Physicochemical properties of the sample are stable until the bottle is closed and the cap untouched. After opening the bottle the local conditions of storage of the sample (courtroom with low humidity, maintaining in a drier, close the bottle immediately after use) will allow its potential reuse.